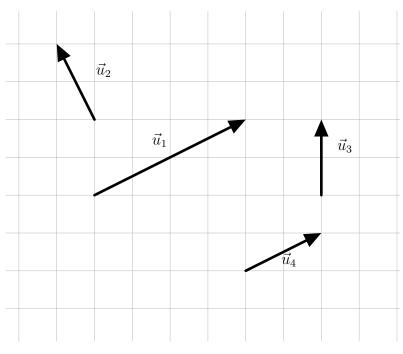
Vecteurs et produit scalaire

 $\underline{\text{Exercice 1:}}\, \text{On considère 4 vecteurs } \vec{u}_1$, \vec{u}_2 , \vec{u}_3 et $\vec{u}_4.$



Tracer les vecteurs suivants :

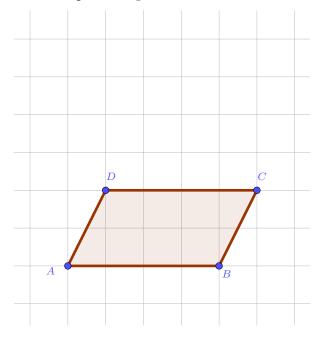
(a)
$$\vec{v}_1 = \vec{u}_1 + \vec{u}_2$$

(c)
$$\vec{v}_3 = \vec{u}_1 - 2\vec{u}_4$$

(b)
$$\vec{v}_2 = 3\vec{u}_3 - 2\vec{u}_2$$

(d)
$$\vec{v}_4 = \frac{1}{2}\vec{u}_1 - \frac{5}{2}\vec{u}_3 + 2\vec{u}_2$$

Exercice 2 : Soit ABCD est un parallélogramme.

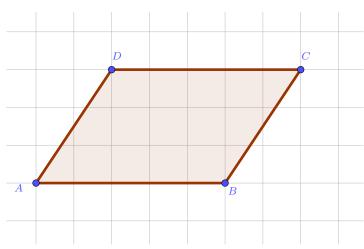


1. Construire les point M et N définis par :

$$\overrightarrow{AM} = 3\overrightarrow{AD}$$
 et $\overrightarrow{BN} = \frac{1}{2}\overrightarrow{AB}$

- 2. Exprimer \overrightarrow{CM} et \overrightarrow{CN} en fonction de \overrightarrow{AB} et \overrightarrow{AD} .
- 3. Démontrer que C, M et N sont alignés.

Exercice 3 : Soit ABCD est un parallélogramme.



1. Construire les point I, J, K et L définis par :

$$\overrightarrow{AI} = \frac{1}{5}\overrightarrow{AB} \; ; \; \overrightarrow{BJ} = \frac{1}{3}\overrightarrow{BC} \; \; ; \; \overrightarrow{CK} = \frac{1}{5}\overrightarrow{CD} \; ; \; \overrightarrow{DL} = \frac{1}{3}\overrightarrow{DA}$$

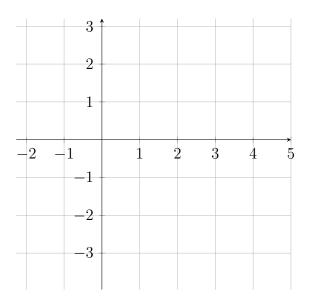
2. Montrer que l'on a :

$$\overrightarrow{IJ} = \frac{4}{5}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$$

- 3. Montrer que l'on a la même égalité avec le vecteur \overrightarrow{LK} .
- 4. En déduire la nature du quadrilatère IJKL.

Exercice 4: On considère les points A(4;3), B(1;-3) et $C\left(-\frac{3}{2};2\right)$

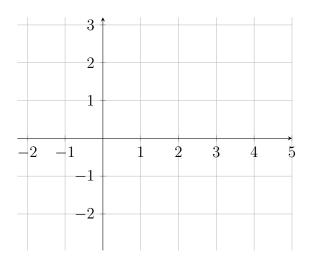
1. Placer les points dans une figure.



- 2. Donner les valeurs exactes des distances AC et BC. En déduire la nature du triangle ABC.
- 3. Donner les coordonnées du point D tel que $\overrightarrow{BD} = \overrightarrow{CA}$.
- 4. Donner les coordonnées du point I milieu de [AB].
- 5. Montrer que I est le milieu de [CD].

Exercice 5: On considère les points A(3;1), B(1;2) et C(-2;1)

1. Placer les points dans une figure.



- 2. Représenter le vecteur $\overrightarrow{AM} = 2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.
- 3. Donner les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AM} .
- 4. En déduire les coordonnées du point M.

$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{CB}$$
 , $\overrightarrow{CQ} = \overrightarrow{AB}$, $\overrightarrow{CR} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$

1. Décomposition vectorielle :

- (a) Exprimer les \overrightarrow{PQ} et \overrightarrow{PR} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- (b) Montrer que les points P, Q et R sont alignés.

2. Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$:

- (a) Déterminer les coordonnées des six points.
- (b) Montrer que les points P, Q et R sont alignés.

Exercice 7: On considère les points A(-3;-1), B(2;1).

- 1. Calculer les coordonnées de I milieu de [AB].
- 2. Soit $C\left(-5; -\frac{9}{5}\right)$. Montrer que les points A, B et C sont alignés.
- 3. En déduire que les vecteurs \overrightarrow{AC} et \overrightarrow{AI} sont colinéaires et calculer le coefficient de colinéarité.

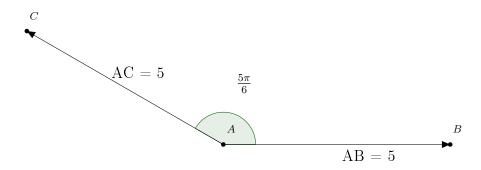
Exercice 8 : On considère un nombre réel α . Déterminer la valeur de α pour que les vecteurs soient colinéaires :

1. Pour
$$\vec{u} \begin{pmatrix} \alpha \\ -2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 2\alpha + 1 \\ 3 \end{pmatrix}$.

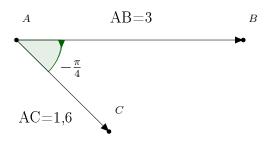
2. Pour
$$\vec{u} \begin{pmatrix} 3\alpha \\ 2\alpha - 3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 4 + 3\alpha \\ 2\alpha - 7 \end{pmatrix}$.

Exercice 9:

1. Déterminer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans le cas suivant :



2. Déterminer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans le cas suivant :

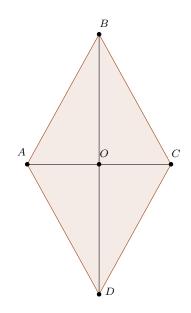


Exercice 10:

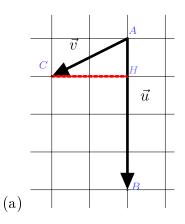
On considère le losange ABCD de centre O, tel que AC = AB = 4.

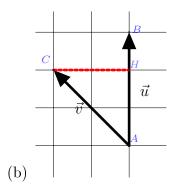
Déterminer les produits scalaires suivants :

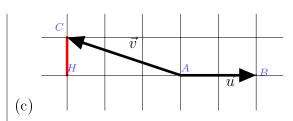
- 1. $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2. $\overrightarrow{AC} \cdot \overrightarrow{OB}$
- 3. $\overrightarrow{OA} \cdot \overrightarrow{OC}$
- 4. $\overrightarrow{CD} \cdot \overrightarrow{AB}$
- 5. $\overrightarrow{AC} \cdot \overrightarrow{AO}$

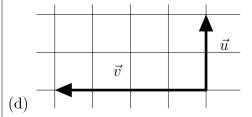


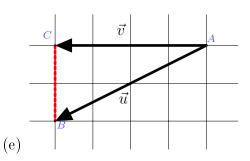
Exercice 11: Déterminer dans les différents cas le produit scalaire des vecteurs \vec{u} et \vec{v} (l'unité étant le carreau) :











<u>Exercice 12</u>: On considère les points A(2,2), B(-2,1) et $C\left(-\frac{5}{2},3\right)$. Déterminer la valeur des produits scalaires : $\overrightarrow{AB} \cdot \overrightarrow{AC}$, $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{CA} \cdot \overrightarrow{CB}$.

Quel est la nature du rectangle ABC?

Exercice 13: Dans chacun des cas suivants, le triangle ABC est-il rectangle:

- (a) A(2,3), B(-2,1), C(4,-1).
- (b) A(3,3), B(5,-3), C(1,1).
- (c) A(4,-2), B(1,3), C(1,-4).

Exercice 14: Dans chacun des cas suivants, les droites (AB) et (AC) sont-elles perpendiculaires:

- (a) A(-2,-1), B(1,2), C(-4,1).
- (b) A(4,2), B(-1,-1), C(6,-1).
- (c) A(1,-3), B(5,-2), C(0,1).

Exercice 15: On considère un nombre a réel.

Déterminer la valeur de a pour que les vecteurs soient orthogonaux :

(a)
$$\vec{u} \begin{pmatrix} a+3 \\ -2a \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 2a+1 \\ a+5 \end{pmatrix}$

(b)
$$\vec{u} \begin{pmatrix} 3a-2\\2a-1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 10a\\4-15a \end{pmatrix}$

Exercice 16: On considère les points A(-2, -3), B(-1, 1), et C(1, -8).

- 1. Déterminer les normes suivantes : $\|\overrightarrow{AB}\|$ et $\|\overrightarrow{AC}\|$.
- 2. Déterminer le produit scalaire des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
- 3. En déduire une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$.

Exercice 17: On considère les points A(9,1), B(-1,2), et C(5,-3).

- 1. Déterminer les normes suivantes : $\|\overrightarrow{AB}\|$ et $\|\overrightarrow{AC}\|$.
- 2. Déterminer le produit scalaire des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
- 3. En déduire, à l'aide de la calculatrice, un valeur approchée d'une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$.

Exercice 18: On considère les points A(3,1), B(-1,3) et C(2,2).

- 1. Montrer que les droite (OA) et (OB) sont perpendiculaire.
- 2. Déterminer les angles géométrique (\widehat{AOC}) et (\widehat{COB}) .
- 3. On se place dans le repère $(O; \overrightarrow{OA}, \overrightarrow{OB})$. Déterminer les coordonnées du vecteur \overrightarrow{OC} dans ce nouveau repère.