Exercices sur les suites

 $\underline{\text{Exercice 1:}} \\ \text{Calculer les cinq premiers termes des suites suivantes:}$

1. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par : $u_n = 2n^2 + n - 3$

2. La suite
$$(u_n)$$
 définie pour tout $n \in \mathbb{N}$ par : $u_n = \frac{2n}{n+5}$

3. La suite
$$(u_n)$$
 définie pour tout $n \in \mathbb{N}$ par : $u_n = \frac{n^2 - 1}{n^2 + 1}$

4. La suite
$$(u_n)$$
 définie pour tout $n \in \mathbb{N}$ par :
$$\left\{ \begin{array}{l} u_0 = -1 \\ u_{n+1} = 2u_n - 3 \end{array} \right.$$

5. La suite
$$(u_n)$$
 définie pour tout $n \in \mathbb{N}$ par :
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n + 1}{3} \end{cases}$$

6. La suite
$$(u_n)$$
 définie pour tout $n \in \mathbb{N}$ par :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + \frac{1}{u_n} \end{cases}$$

7. La suite
$$(u_n)$$
 définie pour tout $n \in \mathbb{N}$ par :
$$\begin{cases} u_0 = 2 \\ u_{n+1} = 3(u_n - 2)^2 \end{cases}$$

Exercice 2: Soit (v_n) la suite définie par $v_n = 3n^2 - 2$. Montrer que la suite est croissante.

Exercice 3: Soit (u_n) la suite définie par $u_n = -2n^2 + n + 5$. Montrer que la suite est décroissante.

Exercice 4: Soit (u_n) la suite définie par $u_n = \frac{3}{n+5}$. Étudier les variations de la suite (u_n) .

Exercice 5: Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par : $\begin{cases} u_0 = 0 & \text{si } n = 0 \\ u_{n+1} = u_n^2 - 3u_n + 4 & \text{sinon} \end{cases}$ Montrer que la suite (u_n) est croissante.

Exercice 6: Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par : $\begin{cases} u_0 = 5 & \text{si } n = 0 \\ u_{n+1} = u_n^2 + 3u_n + 4 & \text{sinon} \end{cases}$

1. Montrer que, pour tout $x \in \mathbb{R}$, on a :

$$x^2 + 2x + 4 = (x+1)^2 + 3$$

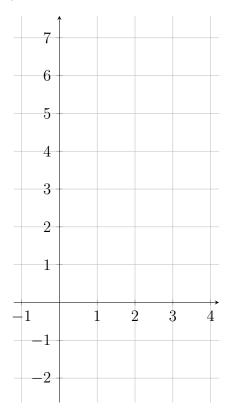
2. Montrer que la suite (u_n) est croissante.

Exercice 7 : On considère la suite (u_n) définie, pour tout $n \in \mathbb{N}$ par :

$$u_n = -3n + 7$$

Compléter le tableau puis représenter de la suite (u_n) :

n	0	1	2	3
u_n				

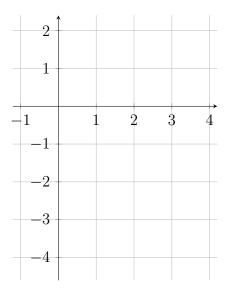


Exercice 8 : On considère la suite (v_n) définie, pour tout $n \in \mathbb{N}$ par :

$$v_n = \frac{1}{2}n^2 - n - 3$$

Compléter le tableau puis représenter de la suite (v_n) :

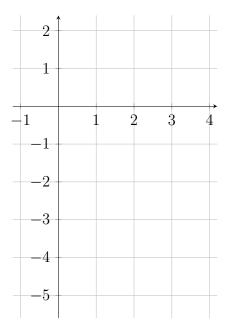
n	0	1	2	3	4
v_n					



sebjaumaths.free.fr page 2 Lycée Jean Rostand

Exercice 9 : On considère la suite arithmétique (u_n) de premier terme $u_0=-5$ et de raison $R=\frac{2}{3}$.

- 1. Déterminer les 5 premiers termes de la suite.
- 2. Représenter la suite (u_n) .



Exercice 10 : On donne la représentation des 5 premiers points d'une suite (u_n) arithmétique :



Déterminer le premier terme et la raison de la suite.

Exercice 11:

- 1. On considère la suite arithmétique (u_n) de raison R=-5 avec $u_2=24$. Calculer le premier terme de la suite.
- 2. On considère la suite arithmétique (u_n) telle que $u_2=7$ avec $u_4=19$. Calculer la raison de la suite et le premier terme de la suite.
- 3. On considère la suite arithmétique (u_n) avec $u_1 = 25$ et $u_3 = 34$. Calculer la raison et le premier terme de la suite.

sebjaumaths.free.fr page 3 Lycée Jean Rostand

Exercice 12:

1. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par :

$$u_n = 6 - 5(n+2)$$

Montrer que la suite (u_n) est arithmétique.

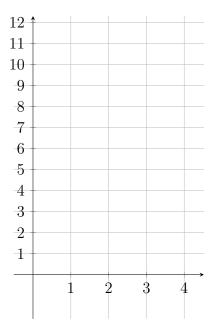
2. La suite (v_n) définie pour tout $n \in \mathbb{N}$ par :

$$v_n = (n+1)^2$$

Montrer que la suite (v_n) n'est pas arithmétique.

Exercice 13 : On considère la suite géométrique (u_n) de premier terme $u_0=2$ et de raison $R=\frac{3}{2}$.

- 1. Déterminer les 5 premiers termes de la suite.
- 2. Représenter la suite (u_n) .



Exercice 14:

- 1. On considère la suite géométrique (u_n) de premier terme $u_0 = 5$ avec $u_2 = \frac{5}{4}$. Calculer la raison de la suite.
- 2. On considère la suite géométrique (u_n) de raison $q = \frac{1}{2}$ avec $u_8 = 40$. Calculer le premier terme de la suite.

sebjaumaths.free.fr page 4 Lycée Jean Rostand

Exercice 15: On considère la suite (v_n) définie, pour tout $n \in \mathbb{N}$ par :

$$v_n = \frac{5^{n+1}}{3}$$

- 1. Déterminer les 5 premiers termes de la suite.
- 2. Montrer que la suite est géométrique.

Exercice 16: (Sujet Bac ES Liban 2014)

La médiathèque d'une petite ville a ouvert ses portes le 2 janvier 2013 et a enregistré 2500 inscriptions en 2013.

Elle estime que, chaque année, 80% des anciens inscrits renouvelleront leur inscription l'année suivante et qu'il y aura 400 nouveaux adhérents.

On modélise cette situation par une suite numérique (a_n) .

On note $a_0 = 2500$ le nombre d'inscrits à la médiathèque en 2013 et a_n représente le nombre d'inscrits à la médiathèque pendant l'année 2013 + n.

- 1. (a) Calculer a_1 et a_2 .
 - (b) Justifier que, pour tout entier naturel n, on a la relation $a_{n+1} = 0, 8 \times a_n + 400$.
- 2. On pose, pour tout entier naturel n, $v_n = a_n 2000$.
 - (a) Démontrer que la suite (v_n) est une suite géométrique de premier terme $v_0 = 500$ et de raison q = 0, 8.
 - (b) On admet que le terme général de la suite est :

$$a_n = 500 \times 0, 8^n + 2000$$

Que peut-on en déduire pour le nombre d'adhérents à la médiathèque si le schéma d'inscription reste le même au cours des années à venir?

3. On propose l'algorithme suivant :

Variables: N entier

A réel

Initialisation: N prend la valeur 0

A prend la valeur 2500

Traitement : Tant que A - 2000 > 50

A prend la valeur $A \times 0.8 + 400$

N prend la valeur N+1

Fin du Tant que

Sortie: Afficher N.

- (a) Expliquer ce que permet de calculer cet algorithme.
- (b) À l'aide de la calculatrice, déterminer le résultat obtenu grâce à cet algorithme et interpréter la réponse dans le contexte de l'exercice.

sebjaumaths.free.fr page 5 Lycée Jean Rostand

<u>Exercice 17</u>: Le baril est l'unité de mesure utilisée pour mesurer les quantités de pétrole brut produites. Un baril équivaut à environ 159 litres.

Compte tenu de la hausse de la consommation mondiale en pétrole, une compagnie pétrolière décide de faire passer sa production mensuelle de 178000 barils à 237000 barils en deux ans. Deux possibilités sont alors envisagées :

- option 1 : augmenter la production de 2459 barils tous les mois.
- option 2 : augmenter de 1,2 % la production chaque mois.

1. Étude de l'option 1

On note u_0 la production mensuelle initiale de 178000 barils et u_n (pour $n \ge 1$) la production en barils n mois plus tard avec l'option 1. On a : $u_0 = 178000$.

- (a) Quelle est la nature de la suite (u_n) ? Donner sa raison.
- (b) A l'aide de la calculatrice, déterminer u_{24} afin de vérifier que l'objectif de la compagnie pétrolière est atteint.

2. Étude de l'option 2

On note v_0 la production mensuelle initiale de 178000 barils et v_n (pour $n \ge 1$) la production en barils n mois plus tard avec l'option 2. On a : $v_0 = 178000$.

- (a) Calculer v_1 .
- (b) Quelle est la nature de la suite (v_n) ? Donner sa raison.
- (c) A l'aide de la calculatrice, déterminer la production mensuelle au bout de deux ans (on donnera le résultat arrondi à l'unité). L'objectif de la compagnie pétrolière est-il atteint?

sebjaumaths.free.fr page 6 Lycée Jean Rostand