Fiche 10 Variables aléatoires

Exercice 1: On considère l'expérience aléatoire suivante :

Une première urne contient cinq boules numérotées 0, 2, 4, 6, 8.

Une deuxième urne contient cinq boules numérotées 1, 2, 3, 4, 5.

On appelle "partie" le fait de tirer au hasard une boule de la première urne, puis une boule de la deuxième. Une partie a donc 25 résultats possibles supposés équiprobables.

1. a Compléter le tableau donnant la somme des deux nombres obtenus pour chacun des résultats possibles.

+	0	2	4	6	8
1					
2					
3					
4					
5					

- b Quelle est la probabilité d'obtenir pour une partie une somme égale à 7?
- c Quelle est la probabilité d'obtenir pour une partie une somme paire?
- d Quelle est la probabilité d'obtenir pour une partie une somme au plus égale à 6?
- 2. On considère le jeu suivant associé à chaque partie. Un joueur gagne :
 - 10 € si la somme est paire,
 - $30 \in \text{si la somme est } 1, 3, \text{ ou } 5,$
 - et ne gagne rien dans les autres cas.

On appelle X la variable aléatoire qui à chaque partie associe son gain en euros.

- a Calculer la probabilité de gagner 30 €.
- b Donner sous forme de tableau la loi de probabilité de la variable aléatoire X.
- c Calculer l'espérance mathématique de la variable aléatoire X.
- d L'organisateur demande 6 € pour obtenir le droit de jouer. Ce jeu est-il équitable?

Exercice 2: On joue au jeu de " pile ou face " avec trois pièces : une de $0.5 \in$, une de $1 \in$ et l'autre de $2 \in$.

Une partie consiste à lancer simultanément les 3 pièces. On notera les résultats par des triplets (exemple : on notera (P,P,F) le fait d'obtenir le résultats :

- pile pour la pièce de $0.5 \in$.
- pile pour la pièce de 1 €.
- face pour la pièce de $2 \in$
- 1. A l'aide d'un arbre, écrire tous les événements élémentaires possibles.
- 2. Calculer les probabilités des événements suivants :
 - A: " Face apparaît deux fois de suite exactement. "
 - B: " Face apparaît deux fois exactement."

- C: " Face apparaît au moins deux fois. "
- D : " Face apparaît deux fois au plus. "
- 3. On considère le jeu suivant : si pile apparaît, on gagne le montant de la valeur de la pièce et si c'est face, on le perd.

On appelle X la variable aléatoire qui à chaque partie associe son gain en euros.

- (a) Donner sous forme de tableau la loi de probabilité de la variable aléatoire X.
- (b) Calculer l'espérance mathématique de la variable aléatoire X. Conclure.

<u>Exercice 3</u>: Une urne contient cinq boules blanches , deux boules noires et trois boules rouges. On extrait au hasard une boule de l'urne, on regarde sa couleur, puis on la replace dans l'urne. Les boules sont indiscernables au toucher.

On note B l'évènement : "La boule est blanche" , N l'évènement : "La boule est noire" et R l'évènement : "La boule est rouge".

- 1. Construire un arbre de probabilités de la situation.
- 2. Déterminer la probabilité d'obtenir deux boules de même couleur.

On définit une variable aléatoire X en associant à chaque couleur un nombre de points comme suit :

Couleur de la boule	Nombre de points		
Noir	7		
Rouge	2		
Blanche	3		

- (a) Définir la loi de probabilité de X.
- (b) Calculer l'espérance mathématique.

Exercice 4: Le coût de production d'un objet est de 950 €. Cet objet peut présenter un défaut A, un défaut B, ou bien en même temps le défaut A et le défaut B. La garantie permet de faire des réparations aux frais du fabricant avec les coûts suivants :

100 euros pour le défaut A et 150 euros pour le défaut B. On admet que 90% des objets produits n'ont aucun défaut, 5% ont au moins le défaut A, et 4% ont les deux défauts A et B.

- 1. A l'aide d'un tableau, déterminer la proportion des objets ayant au moins le défaut B.
- 2. On note X la variable aléatoire qui, à chaque objet choisi au hasard, associe son prix de revient réel. Déterminer la loi de probabilité de X.
- 3. Calculer l'espérance mathématique E(X) de cette variable aléatoire. Interpréter le résultat.
- 4. On admet que tous les objets produits sont vendus.
 - (a) L'usine peut-elle espérer réaliser des bénéfices en vendant 960 € chaque objet vendu?
 - (b) L'usine veut réaliser un bénéfice moyen de 100 € par objet. Expliquer comment doit-on alors choisir le prix de vente de l'objet produit.

Exercice 5: Un élève de niveau moyen en mathématique a résumé ses notes suivant 5 résultats possibles : 0.5,10,15 ou 20.

On dispose des données suivantes :

- 10% de ses devoirs ont eut la note de 0.
- 30% de ses devoirs ont eut la note de 5.
- 20% de ses devoirs ont eut la note de 15.
- La proportion des 10 est 5 fois plus grande que la proportion des 20.

Un élève prépare un prochain devoir. On note X la variable aléatoire associant la note de l'élève.

Les proportions précédentes seront associées aux probabilités de chacun des résultats. Les probabilités seront données en fraction irréductibles.

- 1. Déterminer la probabilité des évènements (X = 10) et (X = 20).
- 2. Quelle est la probabilité de dépasser la moyenne.
- 3. Définir la loi de probabilité de X.
- 4. Calculer l'espérance mathématique. Interpréter le résultat.
- 5. En travaillant un peu plus, l'élève souhaite obtenir une note moyenne de 10. La proportion des résultats étant inchangé, quelle doit être la note centrale (le 10) pour aboutir à ce résultat.

Exercice 6 : Un jeune escroc malicieux propose le jeu de dé suivant :

- On lance 3 fois de suite un dé de 6.
- S'il fait un 6, on **triple** sa mise, sinon on la divise par 2.

La mise de départ est de 10 €.

On se pose la question suivante :

Faut-il jouer à ce jeu??

On nomme donc X la variable aléatoire associé au gain à la fin du jeu. (sans oublier la mise de départ...)

- 1. A l'aide d'un arbre de probabilités, déterminer les valeurs des gains possibles.
- 2. Déterminer la loi de probabilité.
- 3. Répondre à la question.
- 4. Voyant que le jeu n'attire pas, l'escroc décide de quadrupler la mise pour chaque 6 obtenus. La réponse à la question a-t-elle changée?