Intégrales

Dans tout le chapitre, f désigne une fonction définie sur un intervalle D_f , et on note $\mathscr C$ sa courbe représentative dans un repère orthonormé.

I Définition

Définition 1:

Soit f une fonction définie sur un intervalle $D_f = [a, b]$, et F une primitive de f sur D_f . On appelle intégrale de a à b de f le nombre réel F(b) - F(a), on note :

$$\int_{a}^{b} f(t) dt = [F(t)]_{a}^{b} = F(b) - F(a)$$

Exemple 1:

Pour $f(x) = x^2 - 4x + 5$ sur [2, 4], on a $F(x) = \frac{1}{3}x^3 - 2x^2 + 5x$, et ainsi : $\int_2^4 (t^2 - 4t + 5) dt = \left[\frac{1}{3}t^3 - 2t^2 + 5t\right]_2^4 = \underbrace{\left(\frac{1}{3}4^3 - 2 \times 4^2 + 5 \times 4\right)}_{F(4)} - \underbrace{\left(\frac{1}{3}2^3 - 2 \times 2^2 + 5 \times 2\right)}_{F(2)}$ $= \frac{28}{3} - \frac{14}{3} = \frac{14}{3}$

Exercice 1 : Déterminer la valeur des intégrales suivantes :

(a)
$$\int_{-1}^{3} 5x^2 - 3 \, dx$$
 (b) $\int_{1}^{e} \frac{1}{x} \, dx$

Propriété 1 :

Pour f une fonction continue sur D_f , on définit la primitive de f qui s'annule en $a \in D_f$ par :

$$\forall x \in I, F(x) = \int_{a}^{x} f(t) dt$$

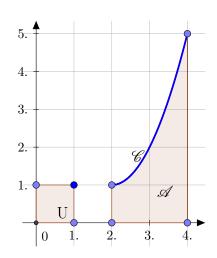
II Interprétation géométrique

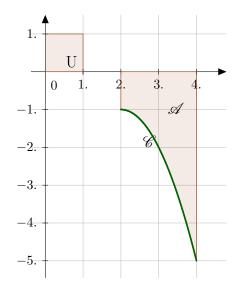
Propriété 2 :

Pour f une fonction continue et positive sur D_f , en notant $I = \int_a^b f(t) dt$. La valeur \mathscr{A} de l'aire, en unité d'aire, de la surface délimitée par les droites d'équations x = a, x = b, l'axe des abscisses et la courbe \mathscr{C} est égale à I:

$$\mathscr{A} = \int_{a}^{b} f(t) \, \mathrm{d}t \, \, \mathrm{U}$$

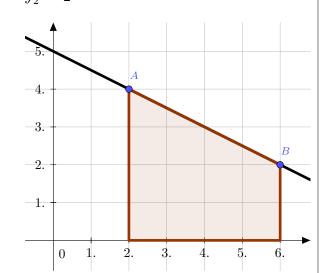
où U est l'unité d'aire du repère.



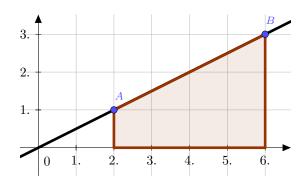


Exercice 2: Déterminer, en utilisant le graphe, la valeur de les intégrales suivantes :

(a)
$$\int_2^6 -\frac{1}{2}x + 5 \, \mathrm{d}x$$
:



(b)
$$\int_{2}^{6} \frac{1}{2} x \, \mathrm{d}x$$
:



Propriété 3 :

Pour une fonction négative, la surface délimitée de la même façon que précédemment, aura une aire en unité d'aire égale à l'opposée de l'intégrale :

$$\mathscr{A} = -\int_{a}^{b} f(t) \, \mathrm{d}t \, \, \mathrm{U}$$

où U est l'unité d'aire du repère.

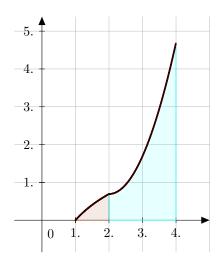
III Propriétés

Propriété 4 :

Relation de Chasles

Pour f une fonction continue sur D_f , et a, b, c dans D_f , on a :

$$\int_a^c f(t) dt = \int_a^b f(t) dt + \int_b^c f(t) dt$$



Propriété 5 :

Pour f une fonction continue sur D_f , et a, b dans D_f , on a:

$$\int_{a}^{a} f(t) \, \mathrm{d}t = 0$$

$$\int_a^b f(t) \, \mathrm{d}t = -\int_b^a f(t) \, \mathrm{d}t$$

Propriété 6 :

Linéarité

Pour f et g deux fonctions continues sur D, et a, b dans D, on a :

$$\int_a^b f(t) + g(t) dt = \int_a^b f(t) dt + \int_a^b g(t) dt$$

Pour tout réel k:

$$\int_{a}^{b} k f(t) dt = k \int_{a}^{b} f(t) dt$$

sebjaumaths.free.fr page 3 Lycée Jean Rostand

Exemple 2:

Pour f définie sur [1,3] par $f(x) = 2x + 5e^x$:

$$\int_{1}^{3} 2x + 5e^{x} dt = \int_{1}^{3} 2x dt + 5 \int_{1}^{3} e^{x} dt$$

Propriété 7 :

Positivité

Pour f et g deux fonctions continues sur D, et a, b dans D, on a:

$$\forall x \in [a, b], f(x) \leqslant g(x) \Rightarrow \int_a^b f(t) dt \leqslant \int_a^b g(t) dt$$

Et:

$$\forall x \in [a, b], f(x) \geqslant 0 \Rightarrow \int_a^b f(t) dt \geqslant 0$$

IV Applications

Propriété 8 :

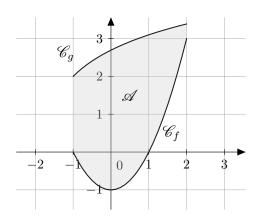
Aire entre deux courbes

Pour f et g deux fonctions continues sur D, avec $f(x) \leq g(x)$.

La valeur $\mathscr A$ de l'aire, en unité d'aire, de la surface délimitée par les droites d'équations x=a, x=b, la courbe $\mathscr C_f$ et la courbe $\mathscr C_g$ est donnée :

$$\mathscr{A} = \int_a^b g(t) - f(t) dt U$$

où U est l'unité d'aire du repère.



Propriété 9 :

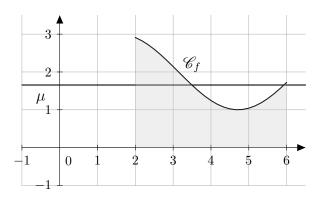
Valeur Moyenne

Pour f une fonction continue sur [a, b]

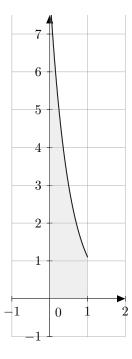
On appelle valeur moyenne de f le réel μ défini par :

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t$$

Pour une fonction positive, cette valeur correspond à la hauteur du rectangle de largeur (b-a) dont l'aire coïncide avec l'aire sous la courbe.



Exercice 3: Déterminer la valeur moyenne de la fonction définie par $f(x) = 3e^{-2x+1}$ sur l'intervalle [0,1].



sebjaumaths.free.fr page 5 Lycée Jean Rostand