Primitives

Dans tout le chapitre, f désigne une fonction définie sur un intervalle I, et on note $\mathscr C$ sa courbe représentative dans un repère orthonormé.

I Primitives

Définition 1 :

Soit f une fonction définie sur I. On appelle primitive de f toutes fonctions dont la dérivée est f:

F est une primitive de f sur l'intervalle I, si et seulement si F est dérivable sur I et pour tout $x \in I$:

$$F'(x) = f(x)$$

Exemple 1:

Pour $f(x) = 6x^2 + 5x - 3$, la fonction définie par $F(x) = 2x^3 + \frac{5}{2}x^2 - 3x + 7$ est une primitive de f sur \mathbb{R} , car on a F'(x) = f(x)...

Propriété 1 :

Pour une fonction f continue sur I, il existe une infinité de primitives toutes égales à une constante additive près :

Si F et G sont deux primitives de f sur I, alors il existe un réel k tel que, pour tout x de I:

$$F(x) = G(x) + k$$

II Primitives de fonctions usuelles

D_f	f(x)	F(x)
\mathbb{R}	$k \in \mathbb{R}$	kx
\mathbb{R}	x	$\frac{1}{2}x^2$
\mathbb{R}	x^2	$\frac{1}{3}x^3$
\mathbb{R}	x^n avec $n \in \mathbb{N}^*$	$\frac{1}{n+1}x^{n+1}$
\mathbb{R}_+^*	$\frac{1}{x}$	ln(x)
$]-\infty,0[$ ou $]0,+\infty[$	$\frac{1}{x^2}$	$-\frac{1}{x}$
$]-\infty,0[\text{ ou }]0,+\infty[$	$\frac{1}{x^n} \text{ avec } n \ge 2$	$-\frac{1}{(n-1)x^{n-1}}$
\mathbb{R}	e^x	e^x

sebjaumaths.free.fr page 1 Lycée Jean Rostand